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Exhibition of intrinsic properties of certain systems in response to external disturbances

P. S. Landa1 and A. Rabinovitch2
1Department of Physics, Lomonosov Moscow State University, 119899 Moscow, Russia
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Two systems, which are models of biological processes, are considered. These systems are notable for
responding to different external actions nearly alike. This is associated with the fact that an external action
excites only their natural intrinsic motions. Two kinds of external actions, harmonic and random, are studied.
It is shown that each of them induces a transition to a new state that can be treated as a peculiar kind of phase
transitions. Characteristics of these phase transitions are found.

PACS number~s!: 87.10.1e, 87.23.Cc, 87.19.La
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I. INTRODUCTION

Usually, the response of a system to external disturban
of different kinds is different. For example, a harmonic e
ternal force applied to a simple nonlinear oscillator causes
a rule, periodic oscillations, whereas a random force res
in random oscillations. Even if chaotic oscillations res
from a harmonic force, they, as a rule, differ essentially fro
random oscillations excited by noise.

However, as will be shown below, there exist syste
which respond to different external disturbances in nearly
same manner, since there an external disturbance cause
system to reveal only its built-in character of motion, i.e.,
intrinsic properties. We consider here two such systems, e
being a model of a certain biological process. We think t
the latter is not a coincidence, because biological systems
known to be robust with respect to the character of the
turbance. The first system is a standard model for childh
epidemics caused by seasonal variations of the contact
The second is a simple model for excitation of neural puls

II. RANDOM AND CHAOTIC OSCILLATIONS IN A
STANDARD MODEL FOR CHILDHOOD EPIDEMICS

CAUSED BY SEASONAL VARIATIONS OF THE
CONTACT RATE OF SUSCEPTIBLE CHILDREN

WITH INFECTIVE ONES

It is known that childhood diseases, such as chickenp
measles, mumps, and rubella, vary seasonally in their ex
tion @1,2#. A standard epidemiological model for the descr
tion of these variations, taking into account seasonal va
tions of the contact rate of children susceptible to infect
with infective ones, includes four categories:~1! Suscep-
tibles (S), ~2! exposed but not yet infective (E), ~3! infective
(I ), ~4! recovered and immune (R). For this reason the
model under consideration is often called SEIR. Mutual
lations between these categories are illustrated schemati
by Fig. 1. The relative number of childrenS susceptible to
infection increases with the total number of children and
creases both owing to the fact that a portion of them rema
unexposed and owing to a transfer of children from this c
egory into the category of the exposed but not yet infect
(E). A portion of the children exposed remains noninfectiv
whereas another portion goes over into the category of
PRE 611063-651X/2000/61~2!/1829~10!/$15.00
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infective ones (I ). In its turn, a portion of the infective chil-
dren does not fall sick while another portion, having had
disease, becomes recovered, and is transferred to the fo
category (R). Taking into account that the total number
children is constant, the equations for this model can be w
ten as

Ṡ5m~12S!2bSI, Ė5bSI2~m1a!E,

İ 5aE2~m1g!I , ~1!

Ṙ5gI2mR, ~2!

where 1/m is the average expectancy time, 1/a is the average
latency period, 1/g is the average infection period,b is the
contact rate~the average number of susceptibles contac
yearly with infective!. Let us note that Eqs.~1! do not con-
tain the variableR; hence these equations can be conside
independently of Eq.~2!.

Equations~1! were first considered by Dietz@3#. Dietz
assumed the periodic variation of the contact rateb with the
period of one year and found analytically a periodic soluti
of the model equations. Later these equations were studie
detail by Olsen and Schaffer@4# and Engbert@5#. It was
shown that periodic variations of the contact rate can re
not only in periodic oscillations of childhood infections b
in chaotic ones as well.

It is easily shown that for time-independent contact r
b5const5b0 Eqs. ~1! have, depending on the paramete
either one@for ab0<(m1a)(m1g)] or two @for ab0.(m
1a)(m1g)] singular points: one of them with coordinate
S51, E5I 50 and the other one~if it exists! with coordi-
nates

FIG. 1. Diagram illustrating mutual relations between differe
components in the SEIR model.
1829 ©2000 The American Physical Society
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In the case when there is only one singular point it is sta
whereas in the case when both of the singular points exis
first of them is aperiodically unstable and the second
stable. These cases are said to correspond to extinctio
epidemics and endemic equilibrium, respectively.

It is shown in Ref.@4# that the values of the model pa
rameters most closely corresponding to the estimates m
for childhood diseases in first world countries arem
50.02 y21, a535.84 y21, g5100 y21, b051800 y21. For
these parameters Eqs.~1! have two singular points. In ou
studies we have used these values of the parameters.

If the parameterb oscillates with time then the variable
S, E, and I oscillate too, and these oscillations are execu
about the stable singular point with the coordinates~3!.
Therefore, it is convenient to substitute into Eqs.~1! the new
variablesx5S/S021, y5E/E021, andz5I /I 021. Putting
b5b0@11b1f (t)#, where f (t) is a function describing the
shape of the contact rate oscillation, let us rewrite Eqs.~1! in
the variablesx, y, z:

ẋ1mx52b0I 0$@11b1f ~ t !#~x1z1xz!1b1f ~ t !%,

ẏ1~m1a!y5~m1a!$@11b1f ~ t !#~x1z1xz!1b1f ~ t !%,
~4!

ż1~m1g!z5~m1g!y.

In Eqs.~4! the termb1f (t) can be considered as an extern
action upon the system. We see from Eq.~4! that this action
is not only multiplicative, i.e., parametric, but also additiv
i.e., forcing. It should be noted that owing to quadratic no
linearity the forcing action, even when not in resonance,
cause a strong response of the system.

For b150 and small initial deviations from the equilib
rium statex50, y50, z50 the system executes damp
oscillations which are close to harmonic ones in shape@Fig.
2~a!#. The frequency of these oscillationsv0'p. As the ini-
tial deviations increase, the natural oscillations of the sys
become close to disconnected, as exemplified by Fig. 2~b!.
The frequency of the natural oscillations decreases as
amplitude increases.

A. Periodic oscillations of the contact rate

As mentioned above, in Refs.@3,4# it was assumed tha
owing to seasonal variations of environmental conditions
contact rateb depends periodically on time with a period
one year, viz.,f (t)5cosvt, wherev52p. We emphasize
that this frequency is approximately equal to the doub
natural frequency of small free oscillations of the model va
ables,v0.

It was shown that the periodic variation of the parameteb
causes the appearance of either periodic or chaotic osc
tions of the variablesS, E, and I. For very smallb1 the
oscillations excited are close to harmonic ones with the
quency of the actionv @Fig. 3~a!#. For a certain value ofb1
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he
s
of

de

d

l

,
-
n

m

eir

e

d
-

la-

-

a period-doubling bifurcation occurs that is associated wit
parametric mechanism of the oscillation excitation. Asb1

increases the main frequency of the oscillations rema
equal tov/2 while the shape of the oscillations of the va
able x becomes close to saw-tooth@Fig. 3~b!#. On further
increasingb1 another period-doubling bifurcation takes pla

FIG. 2. Natural oscillations of the SEIR model variablesx andy
for y(0)50, z(0)50, x(0)50.1 ~a! andx(0)51 ~b!; ~c! the phase
portrait. The values of the parameters are determined by Eq.~4!.
The shape of the variablez is similar to that ofy.

FIG. 3. The time dependencies of the SEIR model variablex
and y in the case of the periodic variation of the contact rate
b150.03 ~a!, b150.1 ~b!, andb150.26 ~c!.
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PRE 61 1831EXHIBITION OF INTRINSIC PROPERTIES OF . . .
@Fig. 3~c!# and then a drastic transition to chaos, accom
nied by a drastic increase in oscillation variance, occurs.
note that chaotic oscillations forb150.28 were first found
numerically by Olsen and Schaffer@4#. For this value ofb1
the time dependencies ofx and y, and the projection of the
phase trajectory on thex, y plane found by numerical simu
lation of Eqs.~4! are shown in Fig. 4~a!. It should be noted
that these oscillations in their form closely resemble the
perimental data. This fact seemingly justifies the model w
a periodic variation of the contact rate. However, as it is s
from Fig. 4~b!, similar results can also be obtained for
random variation of the contact rate. The similarity betwe
the shapes of the oscillations is associated with the fact
the variation of the contact rate only induces a transition
an oscillatory state~see below! whereas the shape of th
induced oscillations is mainly determined by the intrins
properties of the system, which also manifest themselve
the shape of its free oscillations.

The evolution of the power spectra of the oscillations
the case of a periodic variation of the contact rate is ill
trated in Fig. 5. We see that forb150.03 the spectral densit
does peak at the frequencyv, whereas forb150.1 it peaks at
the frequencyv/2. For b150.26 the power spectrum con
tains the forth subharmonic, and forb150.28, when the os-
cillations are chaotic, the spectrum becomes continuous
a maximum at the frequencyv/4.

The excitation of the oscillations at the frequencyv/2
5p can be considered as a phase transition induced by
periodic variation of the contact rate. This consideration
supported by the dependence of the variance of the vari
x, which we denote bys2, on the parameterb1 @Fig. 6~a!#.
We see that forb1 close tob1

(cr)'0.066 the rate of change o
the variance increases drastically. The dependence ofs2 on

FIG. 4. The time dependencies of the SEIR model variablex
andy, and the projection of the phase trajectory on thex,y-plane for
f (t)5cos 2pt, b150.28 ~a! and f (t)5x(t), b150.235~b!.
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b1 can be approximated by the formulas250.038(b1

2b1
(cr))1/2. Such a dependence is typical of the second or

phase transitions, if one considerss2 as an analog of the
order parameter andb1 as an analog of the temperature.
this approach the critical index is equal to 1/2. Forb1
'0.27 another transition occurs, revealing itself in a tran
tion from periodic oscillations to chaotic ones and in a ju
plike increase of the variance@Fig. 6~b!#. This transition can
be considered as an induced phase transition of the first k

To clarify the physical mechanisms of the phase tran
tions let us change somewhat Eqs.~4! so that the amplitudes
of the parametric and the forcing actions could be var
independently. Namely, let us rewrite Eqs.~4! as

ẋ1mx52b0I 0$@11b1f ~ t !#~x1z1xz!1b2f ~ t !%,

ẏ1~m1a!y5~m1a!$@11b1f ~ t !#~x1z1xz!1b2f ~ t !%,

~5!

ż1~m1g!z5~m1g!y.

First we consider the case when the additive action
absent, i.e.,b250, b1Þ0. In this case the dependence ofs2

on b1 is shown in Fig. 7~a!. It is seen that oscillations ar
excited only from a certain critical value of the parameterb1
onward. This is the characteristic property of parametric

FIG. 5. The evolution of the power spectra forx(t) andy(t) in
the case of harmonic variation of the contact rate:b150.03 ~a!,
b150.1 ~b!, b150.26~c!, andb150.28~d!. We see that the spectr
for y(t) are wider than those forx(t).
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1832 PRE 61P. S. LANDA AND A. RABINOVITCH
citation of oscillations~see, for example, Ref.@6#!. As the
difference betweenb1 and its critical valueb1

(cr)'0.0325
increases, the variance increases nearly linearly. The cri
index for this case is therefore 1. Forb1.0.75 the solution
becomes unstable and goes to infinity.

In the case when the action is only additive, i.e.b150,
b2Þ0 oscillations are excited even for values ofb2 as small
as is wished. However, forb2,b2

(cr) , whereb2
(cr)'0.0885,

the amplitude of these oscillations is very small and th
frequency is equal tov. For b2'b2

(cr) the rate of change o
the variance of the oscillations increases rapidly and forb2

.b2
(cr) the dependence ofs2 on b2 can be approximated b

the straight lines250.14(b22b2
(cr)) @see Fig. 7~b!#. The

drastic increase in the rate of change of the variance is a
ciated with the appearance of subharmonic resonance.
indeed, the main frequency of the oscillations excited,
b2.b2

(cr) , becomes equal tov/2. Considering this proces
as a second order phase transition, we can conclude tha
the case of only additive action, as for only parametric
tion, the critical index is equal to 1. Forb2.0.15 the solu-
tion, as in the case of parametric excitation, becomes
stable and goes to infinity. The computation of Eqs.~5!
shows that the combined effect of parametric and forc
actions, which was described above, results in the stabi
tion of the solution for moderately large amplitudes.

FIG. 6. The plot of the variance of the variablex (s2) in the
SEIR model versus the parameterb1 in the range 0<b1<0.268~a!
and in the range 0.23<b1<0.3 ~b!. The dependences2

50.038(b120.066)1/2 is shown in~a! as a solid line.
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B. Random oscillations of the contact rate

From a physical standpoint a random variation of the c
tact rate is more justified than periodic one. It is evident t
b(t) has to be a sufficiently wide-band random process
which the spectral density peaks at the frequency co
sponding to a period of one year. Starting from this assum
tion we have numerically simulated Eqs.~4! with f (t)
5x(t), wherex(t) is a random process which is a solutio
of the equation

ẍ12pẋ16p2x5kj~ t !, ~6!

j(t) is white noise,k is the factor which is chosen so that th
variance ofx(t) would be 1/2. The plots ofx(t) and of its
spectral density are shown in Fig. 8.

The results of the numerical simulation of Eqs.~4! with
f (t)5x(t) are shown in Fig. 4~b! for the same values of the
parameters as in Fig. 4~a! but for b150.235. The latter was
chosen so that the variance ofx(t) would be approximately
the same as forf (t)5cos 2pt, b150.28. It is seen from this
figure that the noise-induced oscillations differ very sligh
in their form both from those for the case of harmonic var
tion of the contact rate and from the experimental data. T
power spectra of the oscillations induced by the random
by the harmonic variation of the contact rate are also simi
both of them peak at the frequencyv/4 @compare Figs. 5~d!

FIG. 7. The plot ofs2 versus the action amplitude for parame
ric ~a! and forcing excitation of oscillations of the SEIR model; th
dependencies s250.42(b120.0325) ~a! and s250.15(b2

20.0905) ~b! are shown as solid lines.
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PRE 61 1833EXHIBITION OF INTRINSIC PROPERTIES OF . . .
and 9~d!#. It should be noted that in the case of rando
variation of the contact rate the power spectrum is alw
continuous~see Fig. 9!; asb1 increases the maximum of th
spectrum shifts to lower frequencies.

Similar to the harmonic variation of the contact rate, t
random variation also induces a transition similar to a ph
transition@7#; in this process the multiplicative component
the random action induces a phase transition much as f
pendulum with randomly vibrated suspension axis@8,9#;
whereas the additive component induces a transition muc
for a nonlinear oscillator with quadratic nonlinearity@6#. The
joint action of both components results in the dependenc
the variance ofx(t) on b1 shown in Fig. 10. In a certain
range of b1 this dependence can be approximated by
straight line. The value ofb1 for which this straight line
intersects the abscissa is equal to 0.066, i.e., it is the sam
that for the harmonic variation of the contact rate. Howe
in this case the critical index is equal to 1 but not to 1/2.

To study the transitions in question in more detail w
have attempted to simulate Eqs.~5!, ~6! with f (t)5x(t) and
put b250, b1Þ0 andvice versa. It is found that in the case
of only multiplicative action the transition occurs via on-o
intermittency as for a pendulum with randomly vibrated s
pension axis@10,11#. The critical value of the parameterb1 is
approximately equal to 0.095, i.e., essentially larger than
the case of harmonic variation of the contact rate. An
ample of oscillations of the variablesx andy for b150.099,
illustrating the on-off intermittency, is given in Fig. 11. Un

FIG. 8. The plots ofx(t) and its spectral density. We see th
the spectral density ofx(t) peaks at the frequency 2p.
s
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FIG. 9. The evolution of the power spectra for the SEIR mo
variablesx(t) ~ left column! andy(t) ~right column! in the case of
random variation of the contact rate:b150.03 ~a!, b150.1 ~b!, b1

50.2 ~c!, andb150.235~d!. We see that, as for the case of period
variation of the contact rate, the spectra fory(t) are wider than
those forx(t).

FIG. 10. The dependence of the variance ofx(t) on the param-
eter b1 in the case of random variation of the contact rate in
SEIR model. The solid line shows the straights250.47(b1

20.066).
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1834 PRE 61P. S. LANDA AND A. RABINOVITCH
fortunately, it appears to be impossible to find the charac
istics of the transition, i.e., the dependence of the oscilla
variance onb1, because even forb150.1 the solution goes to
infinity. In the case whenb150, b2Þ0, the system behave
in a similar manner: the solution goes to infinity forb2
>0.08.

III. BONHOEFFER –van der POL OSCILLATOR

The equations of a so-called Bonhoeffer–van der Pol
cillator were suggested by Bonhoeffer for simulating neu
pulses@12–15#. They are a generalization of the van der P
equations for relaxation oscillations@16#. These equations
describe oscillations of the voltagex across a neural mem
brane with consideration of the refractoriness character
by the variabley. Later similar equations, incorporating sp
tial diffusion, came to be known as FitzHugh–Nagumo eq
tions @17–19#. The Bonhoeffer–van der Pol equations can
written as@20#

ẋ5x2
x3

3
2y1I ~ t !, ẏ5c~x1a2by!, ~7!

wherea, b, andc are the membrane radius, the specific
sistivity of the fluid inside the membrane, and the tempe

FIG. 11. An example of oscillations of the SEIR model va
ablesx andy for b150.099 in the case of only multiplicative ran
dom action.
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ture factor, respectively;I (t)5I 01F(t) is the current across
the membrane withI 0 being the direct component of thi
current.

For F(t)50 and the parameters corresponding to r
membranes~following, for example, Ref.@21# we set a
50.7, b50.8, andc50.1) Eqs.~7! have a single singula
point x5x0 , y5y05(x1a)/b, wherex0 is a real root of the
equation

x3

3
1S 1

b
21D x1

a

b
2I 050. ~8!

In the rangesI 0,0.341 andI 0.1.397 this point is a stable
focus; whereas for 0.341,I 0,1.397 it is an unstable focus

Settingj5x2x0 , h5y2y0 we obtain forj and h the
following equations:

j̇52S j3

3
1x0j21~x0

221!j1h D1F~ t !,

~9!
ḣ5c~j2bh!.

The case when the system under consideration is not
oscillatory is of prime interest for the purpose of this pap
Therefore we restrict our consideration to the case ofI 0
50.2. Eqs.~9! are notable for that they have two exception
phase trajectories@22#. One of these trajectories has a po
tive Lyapunov exponent, i.e., it is unstable, whereas the o
is stable. The first has a part which repels all neighbor
phase trajectories, while the second has two parts which
tract all neighboring phase trajectories. Evidently, these
ceptional trajectories are not a repeller and an attractor in
strict sense, since the system described by Eqs.~9! for I 0
50.2 has no repellers and only a single attractor: the sta
singular point. However, due to some similarity of these t
jectories to repeller and attractor, in Ref.@23# they were
called transient repeller and transient attractor, respectiv
We will follow these names. It should be noted that there
variability in names of these trajectories. For example,
Ref. @24# they are called local separatrices and local attr
tors, in Ref.@25# the attracting trajectory is called phanto
attractor and so on.

To find numerically the transient repeller, we can reve
the direction of time. As a result, we obtain the picture on
phase plane shown in Fig. 12~a!. The part which repels al
neighboring phase trajectories is shown as a thick solid l
A full phase portrait involving both the transient repeller a
transient attractor is given in Fig. 12~b!. The attracting parts
are shown as thick solid lines. We see that the transient
peller separates the regions of deviations from the equ
rium state corresponding to radically different transient p
cesses.

If the currentI (t) across the membrane contains an alt
nating component, for example,F(t)5A cosvt, then, from a
certain critical value ofA onward, oscillations associate
with the motion of the representative point along a pha
trajectory involving the attracting parts are excited@26,27#. It
follows from the results of numerical simulations of Eqs.~9!
that the oscillation amplitudes of the variablesj and h in-
crease nearly by jump in this process@compare Figs. 13~a!
and 13~b!#. The excitation of such oscillations, accompani
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PRE 61 1835EXHIBITION OF INTRINSIC PROPERTIES OF . . .
by a drastic increase in the oscillation variance, can be c
sidered as a phase transition. An example of the depend
of the variance of the variablej(t) on A for v50.3 is given
in Fig. 14~a!. We can conclude from this figure that the pha
transition caused by the harmonic component of the cur
across the membrane is of the first kind~rather than of the
second one!. It is interesting that the jump has a fine stru
ture: there are local ups and downs in the variance gro
@Figs. 14~b! and 14~c!#. This fine structure is associated wi
drastic changes in the oscillation’s shape under sm
changes ofA ~see Figs. 13 and 15!.

The critical value ofA depends on the frequencyv; it is
minimal for a certain value of the frequency which in tu
depends onI 0 @27#. The reason for this dependence is t
resonance response of a nonlinear oscillator to a harm
external force. As an example, the dependence of the cri
value of the amplitudeA on the frequencyv is shown in Fig.
16 for I 050.2. We see that the critical value of the amplitu
is minimal for v50.27, which is close to the frequency o
small free oscillations about the equilibrium state equal
v0'0.3146.

For other values of the frequency the phase transition w
increasingA occurs in a similar manner. This is illustrated b
Fig. 17, where the dependencies of the variance ofj on the
amplitudeA for v50.2 andv50.4 are given.

FIG. 12. The transient repeller and neighboring phase traje
ries for the Bonhoeffer–van der Pol oscillator~a!, and the phase
portrait involving the transient repeller and transient attractors~b!
for a50.7, b50.8, c50.1, andI 050.2.
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If the alternating component of the current across
membraneF(t) is a random process, for example whi
noise, then the transition to a new state is also observed
it is of a radically different character. The appearance o

o-

FIG. 13. Plot ofj(t) and the corresponding phase portraits f
v50.3, A50.057~a!, A50.058~b!, andA50.059~c!.

FIG. 14. The dependence of the variance of the variablej on the
alternating current constituent amplitudeA in the Bonhoeffer–van
der Pol system forv50.3 in the ranges 0<A<0.4 ~a!, 0.05717
<A<0.05723~b!, and 0.0571<A<0.0578~c!.
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1836 PRE 61P. S. LANDA AND A. RABINOVITCH
‘‘limit cycle’’ induced by white noise was considered i
Refs.@24,28–30#. However, these works are mainly devot
to the calculation of the probability distributions in the vici
ity of the induced ‘‘limit cycle.’’ We consider this phenom

FIG. 15. The evolution of the time dependenciesj(t) for v
50.3 and A50.057 ~a!; A50.05717 ~b!; A50.0572 ~c!; A
50.05723~d!; A50.05746~e!; A50.058~f!; andA50.059~g!.

FIG. 16. The dependence of the critical value of the curr
alternating constituent amplitudeAcr on the frequencyv. The char-
acter of this dependence is caused by the resonance response
nonlinear oscillator, including the Bonhoeffer–van der Pol one, t
harmonic external force.
enon from the standpoint of the exhibition of the intrins
properties of the system and the noise-induced transition
new state. The latter is associated with the intersection
boundary on the phase plane~the transient repeller is such
boundary! by the representative point under the action
noise. In principle, such intersection is possible for the no
intensity k as small as is wished. Therefore the transiti
should occur smoothly ask increases. Hence, in the stric
sense this transition is not a phase transition. However,
closely similar to a noise-induced second order phase tra
tion. For example, the dependence of the variance of
variablej on the noise intensityk, found by numerical simu-
lation of Eqs.~9! and shown in Fig. 18~a!, can be approxi-
mated on a certain interval by the formulas2'5(k
20.0065)1/2. This formula is similar to that which describe
the dependence of an order parameter on temperature
ordinary second order phase transitions with critical ind
equal to 1/2. Furthermore, it can be seen~see, e.g., Fig. 19!
that this transition occurs via a peculiar kind of on-off inte
mittency. As for ordinary on-off intermittency@31,32,10,11#,
close to the transition onset the representative point in
phase plane is walking in a certaine-vicinity of the equilib-
rium state over prolonged periods~so called ‘‘laminar
phases’’!, and only occasionally escapes from this vicinit
Contrary to ordinary on-off intermittency, these escapes h
not a random but the strictly specified shape of pulses,
the duration of each of them is unchanged as the noise

t

any
a

FIG. 17. The dependencies of the variance of the variablej on
the current alternating constituent amplitudeA for v50.2 ~a! and
v50.4 ~b!.
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tensity increases. That is why these escapes should no
called ‘‘turbulent phases.’’ Away from the point of onset th
duration of the laminar phases decreases and the varian
the system variables increases. Because here the durati

FIG. 18. The dependencies of the variance of the variablej ~a!
and the mean periodT ~b! on the noise intensityk in the case when
the alternating component of the current across the membraneF(t)
is white noise. Solid lines show the plotssj

255Ak20.0065 ~a!,
andT538 exp(0.02/k) ~b!.

FIG. 19. An example of oscillations of the variablej(t) for k
50.0098 demonstrating a peculiar kind of on-off intermitten
close to the onset of the phase transition.
be

of
of

the pulses is unchanged we can use the mean interpulse
~the mean period! in place of the mean duration of ‘‘lamina
phases.’’ The dependence of the mean periodT on the noise
intensityk is shown in Fig. 18~b!. It can be approximated by
the formula

T'38 expS 0.02

k D ,

which is typical for a mean time of an intersection of
boundary@33,34#. We see that the mean period decrea
exponentially as the noise intensity increases, that qua
tively agrees with the initial part of the corresponding depe
dence obtained in Refs.@24,28#. However, we have no
found the increase of the mean period with increasing
noise intensity which is mentioned in this paper.

It should be noted that the pulses induced by noise di
little in shape from the pulses induced by a periodic for
@compare Figs. 20 and 15~g!#, with the only difference that
the pulses induced by noise are somewhat noisy and
interpulse time is random. Intrinsic properties of the syst
reveal themselves in this similarity.

IV. CONCLUSIONS

In conclusion we note that the considered noise-indu
phase transitions take place in a similar fashion to the ph
transitions induced by a periodic action upon the same s
tems. In the SEIR model the difference between the no
induced phase transitions and the transitions induced b
periodic action is only in the critical index. In th
Bonhoeffer–van der Pol oscillator the transition induced
noise is actually not a phase transition but it is very similar
a second order phase transition, whereas phase transi
induced by a periodic force at a specific frequency are of
first order. The shape of the oscillations excited in con
quence of these transitions is determined by the intrin
properties of the systems and depends only slightly on
exciting action.

FIG. 20. Oscillations of the variablej(t), induced by white
noise, fork50.1152.
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