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Exhibition of intrinsic properties of certain systems in response to external disturbances
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Two systems, which are models of biological processes, are considered. These systems are notable for
responding to different external actions nearly alike. This is associated with the fact that an external action
excites only their natural intrinsic motions. Two kinds of external actions, harmonic and random, are studied.

It is shown that each of them induces a transition to a new state that can be treated as a peculiar kind of phase
transitions. Characteristics of these phase transitions are found.

PACS numbds): 87.10+¢€, 87.23.Cc, 87.19.La

[. INTRODUCTION infective ones (). In its turn, a portion of the infective chil-
dren does not fall sick while another portion, having had the

Usually, the response of a system to external disturbancedisease, becomes recovered, and is transferred to the fourth
of different kinds is different. For example, a harmonic ex-category R). Taking into account that the total number of
ternal force applied to a simple nonlinear oscillator causes, ashildren is constant, the equations for this model can be writ-
a rule, periodic oscillations, whereas a random force resultgen as
in random oscillations. Even if chaotic oscillations result
from a harmonic force, they, as a rule, differ essentially from S=m(1-S)—bSl, E=bSI-(m+a)E,
random oscillations excited by noise.

However, as will be shown below, there exist systems

which respond to different external disturbances in nearly the I=aE—(m+g)l, @
same manner, since there an external disturbance causes the
system to reveal only its built-in character of motion, i.e., its R=gl-mR 2)

intrinsic properties. We consider here two such systems, each

being a ”.‘Ode' of a _cer_tain biological process. We think that, here 1 is the average expectancy timeals the average
the latter is not a coincidence, because biological systems argtency period, 1 is the average infection perio8,is the
known to be ropust with re§pect to the character of the disg ontact rate(the average number of susceptibles contacted
turbance. The first system is a standard model for chlldhoo%ea”y with infectiva. Let us note that Eq1) do not con-

epidemics caused by seasonal variations of the contact rafgy, the yariableR; hence these equations can be considered
The second is a simple model for excitation of neural pUIseSmdependently of Eq(2)

Equations(1) were first considered by Diet3]. Dietz

II. RANDOM AND CHAOTIC OSCILLATIONS IN A assumed the periodic variation of the contact tateith the
STANDARD MODEL FOR CHILDHOOD EPIDEMICS period of one year and found analytically a periodic solution
CAUSED BY SEASONAL VARIATIONS OF THE of the model equations. Later these equations were studied in
CONTACT RATE OF SUSCEPTIBLE CHILDREN detail by Olsen and Schaffdd] and Engbert5]. It was
WITH INFECTIVE ONES shown that periodic variations of the contact rate can result

] ] ] ) not only in periodic oscillations of childhood infections but
It is known that childhood diseases, such as chickenpoxy, chaotic ones as well.
measles, mumps, and rubella, vary seasonally in their exten- 1t js easily shown that for time-independent contact rate
tion[1,2]. A standard epidemiological model for the descrip-,— const=b, Egs. (1) have, depending on the parameters,
tion of these variations, taking into account seasonal variagjther one[for aby<(m+a)(m+g)] or two [for aby>(m
tions of the contact rate of children susceptible to infection 4y(m+ g)] singular points: one of them with coordinates

with infective ones, includes four categorigs) Suscep- S=1, E=1=0 and the other onéf it exists) with coordi-
tibles (S), (2) exposed but not yet infectivee], (3) infective [ 15teg

(1), (4) recovered and immuneRj. For this reason the
model under consideration is often called SEIR. Mutual re-
lations between these categories are illustrated schematically
by Fig. 1. The relative number of childre®susceptible to
infection increases with the total number of children and de-
creases both owing to the fact that a portion of them remains
unexposed and owing to a transfer of children from this cat-
egory into the category of the exposed but not yet infective
(E). A portion of the children exposed remains noninfective, FIG. 1. Diagram illustrating mutual relations between different
whereas another portion goes over into the category of theomponents in the SEIR model.
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In the case when there is only one singular point it is stable, t t
whereas in the case when both of the singular points exist the 1.2 ; : : 30 . : :
first of them is aperiodically unstable and the second is 08 | 1 0 i ]
stable. These cases are said to correspond to extinction ¢ 04} /\ A 1 s 10 i
epidemics and endemic equilibrium, respectively. 0 v VAV"V"V’V‘v A Aoan
It is shown in Ref.[4] that the values of the model pa- 0.4 V 1 0
rameters most closely corresponding to the estimates mad %8 - 5 T 0 15 20
for childhood diseases in first world countries ane t ¢

=0.02y ! a=3584y ! g=100y !, b,=1800y *. For
these parameters Egd) have two singular points. In our
studies we have used these values of the parameters. 20 .
If the parameteb oscillates with time then the variables >
S E, and| oscillate too, and these oscillations are executed
about the stable singular point with the coordinat8s O s Y
Therefore, it is convenient to substitute into E@S.the new 08 -04 0 04 08 1.2
variablesx=S/Sy—1, y=E/Ey—1, andz=1/15— 1. Putting X
b=Dbo[1+Db,f(1)], wheref(t) s a function deS(.;”bmg _the FIG. 2. Natural oscillations of the SEIR model variabkesndy
shape (_)f the contact rate oscillation, let us rewrite Etjsin =~ ¢, y(0)=0, 2(0)=0, x(0)=0.1(a) andx(0)=1 (b); (c) the phase
the variables, y, z portrait. The values of the parameters are determined by(4qg.
The shape of the variableis similar to that ofy.

x+mx=—bglo{[ 1+ b, f(t)](x+z+x2) + b f(1)},

a period-doubling bifurcation occurs that is associated with a
parametric mechanism of the oscillation excitation. s
increases the main frequency of the oscillations remains
equal tow/2 while the shape of the oscillations of the vari-
In Egs. (4) the termb, f(t) can be considered as an external@ble x becomes close to saw-toofig. 3(b)]. On further
action upon the system. We see from E4). that this action increasingy, another period-doubling bifurcation takes place
is not only multiplicative, i.e., parametric, but also additive,

y+(m+a)y=(m+a){[1+b,f(t)](x+z+x2)+b,f(t)},

. (4)
z+(m+g)z=(m+q)y.

i.e., forcing. It should be noted that owing to quadratic non- 0.01 . 02 — T
linearity the forcing action, even when not in resonance, can 0.005 0.1
cause a strong response of the system. y 0 o 0
For b;=0 and small initial deviations from the equilib-
. -0.005 0.1 f
rium statex=0, y=0, z=0 the system executes damped T, TN
oscillations which are close to harmonic ones in sHagg. P yEpe—, SR P——
2(a)]. The frequency of these oscillationg~ 7. As the ini- t t
tial deviations increase, the natural oscillations of the systerr o5 25
become close to disconnected, as exemplified by Fig). 2 TN b ok 114
The frequency of the natural oscillations decreases as thei 0.05 | 1-? 1 y
amplitude increases. x 0 > 05 ]
-0.05 H 0
SR 28
A. Periodic oscillations of the contact rate -0.15 L -1 S EEE—
40 44 48 52 56 60 40 44 48 52 56 60
As mentioned above, in Reff3,4] it was assumed that t t
owing to seasonal variations of environmental conditions the 03
contact rateb depends periodically on time with a period of o2k 4y p ad e i iR
one year, viz. f(t)=coswt, wherew=21. We emphasize 0.1 3l
that this frequency is approximately equal to the doubled> 0 V V V V V > 2F
. . . 0.1 F 1F
natural frequency of small free oscillations of the model vari- oz | V V V V b 0
ables,wo_ 0.3 1 1 1 1 -1 1 1 1 1
It was shown that the periodic variation of the parambter 216 220 224 228 232 236 216 220 224 228 232 236
causes the appearance of either periodic or chaotic oscilla- ! t
tions of the variablesS E, and . For very smallb; the FIG. 3. The time dependencies of the SEIR model variakles

oscillations excited are close to harmonic ones with the freandy in the case of the periodic variation of the contact rate for
guency of the actiom [Fig. 3(a)]. For a certain value df; b,=0.03(a), b;=0.1 (b), andb;=0.26 (c).
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FIG. 4. The time dependencies of the SEIR model variakles 1 d 400
andy, and the projection of the phase trajectory onxheplane for < 1 300
f(t)=cos 2rt, b;=0.28(a) andf(t) = x(t), b;=0.235(b). . 200
. 100
L 0

[Fig. 3(c)] and then a drastic transition to chaos, accompa-
nied by a drastic increase in oscillation variance, occurs. We f f
note that chaotic oscillations fdr;=0.28 were first found FIG. 5. The evolution of the power spectra fqit) andy(t) in

numerically by Olsen and Schaffp#]. For this value ob,  the case of harmonic variation of the contact raig=0.03 (a),

the time dependencies a@fandy, and the projection of the p —0.1(b), b,=0.26(c), andb,=0.28(d). We see that the spectra
phase trajectory on the, y plane found by numerical simu- for y(t) are wider than those fox(t).

lation of Egs.(4) are shown in Fig. @). It should be noted

that these oscillations in their form closely resemble the exb; can be approximated by the formula®=0.038(,
perimental data. This fact seemingly justifies the model with— b(lm))l/Z_ Such a dependence is typical of the second order
a periodic variation of the contact rate. However, as it is seeRhase transitions, if one considesé as an analog of the

from Fig. 4b), similar results can also be obtained for & order parameter and; as an analog of the temperature. In
random variation of the contact rate. The similarity betweenyis approach the critical index is equal to 1/2. Foy

the shapes of the oscillations is associated with the fact that g 27 another transition occurs, revealing itself in a transi-

the variation of the contact rate only induces a transition tgjon from periodic oscillations to chaotic ones and in a jum-
an oscillatory statgsee below whereas the shape of the pjike increase of the variand€ig. 6(b)]. This transition can
induced oscillations is mainly determined by the intrinsic pe considered as an induced phase transition of the first kind.
properties of Fhe system, wh|ch also manifest themselves in 14 clarify the physical mechanisms of the phase transi-
the shape of its free oscillations. tions let us change somewhat E@#). so that the amplitudes

The evolution of the power spectra of the oscillations inof the parametric and the forcing actions could be varied
the case of a periodic variation of the contact rate is '”US‘independentIy. Namely, let us rewrite Eqéd) as

trated in Fig. 5. We see that for, = 0.03 the spectral density

does peak at the frequenay whereas fob; =0.1 it peaks at X+ mx= — bol of[1+ b1 f(1)](x+z+x2)+b,f(1)},

the frequencyw/2. For b;=0.26 the power spectrum con-

tains the forth subharmonic, and fby=0.28, when the os- y+(m+a)y=(m+a){[1+b,f(t)](x+z+x2)+b,f (1)},

cillations are chaotic, the spectrum becomes continuous with

a maximum at the frequenay/4. (5
The excitation of the oscillations at the frequeney?2 z+(m+g)z=(m+Qg)y.

= can be considered as a phase transition induced by the

periodic variation of the contact rate. This consideration is First we consider the case when the additive action is

supported by the dependence of the variance of the variablgbsent, i.e.b,=0, b;#0. In this case the dependenceodt

x, which we denote byr?, on the paramete; [Fig. 6@].  on b, is shown in Fig. 7a). It is seen that oscillations are

We see that fob, close tob{°”~0.066 the rate of change of excited only from a certain critical value of the paramédter

the variance increases drastically. The dependeneg @n  onward. This is the characteristic property of parametric ex-
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FIG. 6. The plot of the variance of the variabte(c?) in the
SEIR model versus the paramebgrin the range 6&<b;=<0.268(a)
and in the range 0.28b;<0.3 (b). The dependences?

=0.038(, —0.066)"2 is shown in(a) as a solid line.

citation of oscillations(see, for example, Ref6]). As the

difference betweerb, and its critical valueb{°”~0.0325
increases, the variance increases nearly linearly. The critic
index for this case is therefore 1. Floy>0.75 the solution

becomes unstable and goes to infinity.

In the case when the action is only additive, bhg=0,

FIG. 7. The plot ofo® versus the action amplitude for paramet-
ric (a) and forcing excitation of oscillations of the SEIR model; the
dependencies ¢?=0.42(p;—0.0325) (@ and o?=0.15(,
—0.0905) (b) are shown as solid lines.

B. Random oscillations of the contact rate

From a physical standpoint a random variation of the con-
t?ct rate is more justified than periodic one. It is evident that
z%)(t) has to be a sufficiently wide-band random process for
which the spectral density peaks at the frequency corre-
sponding to a period of one year. Starting from this assump-
tion we have numerically simulated Eq$4) with f(t)

bzfo qscillations are excited e\(/ce:)n for value(itrl);ias small =), wher_eX(t) is a random process which is a solution
as is wished. However, fdi,<b;™’, whereb;"'~0.0885,  of the equation

the amplitude of these oscillations is very small and their
frequency is equal t@. For b2~b(2”) the rate of change of
the variance of the oscillations increases rapidly andbfor

>b{™" the dependence af? on b, can be approximated by ¢(t) is white noisek is the factor which is chosen so that the
the straight linea?=0.14(,—b*") [see Fig. ™)]. The  variance ofy(t) would be 1/2. The plots of(t) and of its
drastic increase in the rate of change of the variance is assepectral density are shown in Fig. 8.

ciated with the appearance of subharmonic resonance. And The results of the numerical simulation of Eg$) with
indeed, the main frequency of the oscillations excited, forf(t) = y(t) are shown in Fig. &) for the same values of the
b,> b(zcr), becomes equal t@/2. Considering this process parameters as in Fig.(d but for b;=0.235. The latter was
as a second order phase transition, we can conclude that, @hosen so that the variance xdft) would be approximately
the case of only additive action, as for only parametric acthe same as fof(t) =cos 2rt, b;=0.28. It is seen from this
tion, the critical index is equal to 1. Fdr,>0.15 the solu- figure that the noise-induced oscillations differ very slightly
tion, as in the case of parametric excitation, becomes unin their form both from those for the case of harmonic varia-
stable and goes to infinity. The computation of E¢S. tion of the contact rate and from the experimental data. The
shows that the combined effect of parametric and forcingpower spectra of the oscillations induced by the random and
actions, which was described above, results in the stabilizahy the harmonic variation of the contact rate are also similar:
tion of the solution for moderately large amplitudes. both of them peak at the frequenay4 [compare Figs. @&l)

x+2my+6miy=KE), (6)



PRE 61 EXHIBITION OF INTRINSIC PROPERTIES OF ... 1833

0.35 ; : : 25 . . .
03 | 4 a L i
0.25 i fg
x 0.2 - > B T
7ot 1% rop T
\ 0.05 | - 5r T
0 1 1 o 1 -
‘ h H‘H}i“‘\t | HH\“HII\ 0 05 1 15 2 0 05 1 15 2
= ["WH!“’I‘W o2n o2n
5 300 . . .
’ 4 1 b o5} g
3 | 200 |- g
2 4 o X o 150 - i
25 ] 1 ] 100 | g
_3 1 1 L L L L L L L 0 58 i 1 T
50 60 70 80 90 100 110 120 130 140 150 > 0 05 1 15 o2
t O2R
T 8 300 T T T
b] J 19 20} .
: ] 200 |- g
1 w4 4 o 150 F 4
i g ] 100 | -
1 . 50 | —
- 0 0 1 1 1
" 2 6 05 1 15 2
7 w/2n
. g 4o
T 300
1 5 1 & 200
1 4 100
' 0
o 35 4 15 2
=wen ®/2n ®/2n

FIG. 8. The plots ofy(t) and its spectral density. We see that

FIG. 9. Th luti f th tra for the SEIR I
the spectral density of(t) peaks at the frequencym2 G- 9 e evolution of the power spectra for the S mode

variablesx(t) ( left column andy(t) (right column) in the case of
random variation of the contact rate;=0.03(a), b;=0.1(b), b;
and 9d)]. It should be noted that in the case of random=0.2(c), andb,=0.235(d). We see that, as for the case of periodic
variation of the contact rate the power spectrum is alwaysariation of the contact rate, the spectra fdt) are wider than
continuous(see Fig. 3 asb; increases the maximum of the those forx(t).
spectrum shifts to lower frequencies.

Similar to the harmonic variation of the contact rate, the
random variation also induces a transition similar to a phase
transition[7]; in this process the multiplicative component of 0.12 . T . . .
the random action induces a phase transition much as for i
pendulum with randomly vibrated suspension ak89];
whereas the additive component induces a transition much a
for a nonlinear oscillator with quadratic nonlineari6]. The
joint action of both components results in the dependence o 0.08 |
the variance ofx(t) on b; shown in Fig. 10. In a certain
range of b, this dependence can be approximated by a
straight line. The value ob; for which this straight line
intersects the abscissa is equal to 0.066, i.e., it is the same ¢
that for the harmonic variation of the contact rate. However 0.04 [
in this case the critical index is equal to 1 but not to 1/2.

To study the transitions in question in more detail we

01 F

0.06 [

have attempted to simulate EdS), (6) with f(t) = x(t) and o0z

putb,=0, b;#0 andvice versalt is found that in the case

of only multiplicative action the transition occurs via on-off 0 +

intermittency as for a pendulum with randomly vibrated sus- 0 003 01 0;15 02 023 03

pension axi$10,11]. The critical value of the parametey is

approximately equal to 0.095, i.e., essentially larger than in  FIG. 10. The dependence of the variancet) on the param-
the case of harmonic variation of the contact rate. An eXeterb, in the case of random variation of the contact rate in the
ample of oscillations of the variablesandy for b;=0.099, SEIR model. The solid line shows the straighf=0.47(,
illustrating the on-off intermittency, is given in Fig. 11. Un- —0.066).
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0.06 . . . . T . T ture factor, respectivelyy(t) =14+ F(t) is the current across
the membrane withH, being the direct component of this
0.04 current.
For F(t)=0 and the parameters corresponding to real
0.02 membranes(following, for example, Ref.[21] we seta
=0.7, b=0.8, andc=0.1) Egs.(7) have a single singular
x 0 pointx=xXq, y=Yo=(X+a)/b, wherex, is a real root of the
equation
-0.02
X + ! 1|x+ 2 [,=0 8
-0.04 3 g Xt =0 8
0.06 ! ! ! L ! L In the ranged ;<<0.341 and (,>1.397 this point is a stable
0 20 40 60 80 100 120 140 focus; whereas for 0.34411,<1.397 it is an unstable focus.
t Setting é=x—Xg, n=Yy—Yo We obtain foré and » the
05 : following equations:
04 ) §3
03 f §=— §+x0§2+(x(2)—1)§+ 7])+F(t).
02 ' (9)
o1t n=c(é—bp).
> 0 . L
o The case when the system under consideration is not self-
=T oscillatory is of prime interest for the purpose of this paper.
02 Therefore we restrict our consideration to the casd pof
03} =0.2. Egs(9) are notable for that they have two exceptional
04} phase trajectorieg22]. One of these trajectories has a posi-
05 . . . . . . . tive Lyapunov exponent, i.e., it is unstable, whereas the other
o 20 40 60 80 100 120 140 is stable. The first has a part which repels all neighboring
t phase trajectories, while the second has two parts which at-

tract all neighboring phase trajectories. Evidently, these ex-
ceptional trajectories are not a repeller and an attractor in the
strict sense, since the system described by Eg@jsfor 1,
=0.2 has no repellers and only a single attractor: the stable
) ) ) ] singular point. However, due to some similarity of these tra-
for_tunately, it appears 'Fo be impossible to find the Cha_raCt_er‘ectories to repeller and attractor, in R3] they were
istics of the transition, i.e., the dependence of the oscillatioiyy|ieq transient repeller and transient attractor, respectively.
variance orb,, because even fdr; =0.1 the solution goes to e will follow these names. It should be noted that there is
infinity. In the case wheib, =0, b,#0, the system behaves \riapility in names of these trajectories. For example, in
in a similar manner: the solution goes to infinity f0b  Ref. [24] they are called local separatrices and local attrac-
=0.08. tors, in Ref.[25] the attracting trajectory is called phantom
attractor and so on.
Ill. BONHOEFFER —van der POL OSCILLATOR To fino! nume'rically the transient repel_ler, we can reverse
the direction of time. As a result, we obtain the picture on the
The equations of a so-called Bonhoeffer—van der Pol osphase plane shown in Fig. (. The part which repels all

cillator were suggested by Bonhoeffer for simulating neuralneighboring phase trajectories is shown as a thick solid line.
pulses[12—15. They are a generalization of the van der PolA full phase portrait involving both the transient repeller and
equations for relaxation oscillatiofd6]. These equations transient attractor is given in Fig. 8. The attracting parts
describe oscillations of the voltageacross a neural mem- are shown as thick solid lines. We see that the transient re
brane with consideration of the refractoriness characterizegeller separates the regions of deviations from the equilib-
by the variabley. Later similar equations, incorporating spa- rium state corresponding to radically different transient pro-
tial diffusion, came to be known as FitzHugh—Nagumo equacesses.
tions[17-19. The Bonhoeffer—van der Pol equations can be If the currentl (t) across the membrane contains an alter-

FIG. 11. An example of oscillations of the SEIR model vari-
ablesx andy for b;=0.099 in the case of only multiplicative ran-
dom action.

written as[20] nating component, for example(t) = A coswt, then, from a
certain critical value ofA onward, oscillations associated
_ X3 _ with the motion of the representative point along a phase
X=X— = —-y+I1(t), y=c(x+a—by), (7)  trajectory involving the attracting parts are excit@,27). It

follows from the results of numerical simulations of E¢®).

that the oscillation amplitudes of the variablésand » in-
wherea, b, andc are the membrane radius, the specific re-crease nearly by jump in this procdgompare Figs. 13)
sistivity of the fluid inside the membrane, and the temperaand 13b)]. The excitation of such oscillations, accompanied
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g
If the alternating component of the current across the
~ FIG. 12. The transient repeller and ne_ighboring phase trajectomembraneF(t) is a random process, for example white
ries for the Bonhoeffer—van der Pol oscillat@, and the phase nojse, then the transition to a new state is also observed, but

portrait involving the transient repeller and transient attractb)s it js of a radically different character. The appearance of a
fora=0.7,b=0.8,¢c=0.1, andl,=0.2.

1.8 . . r . . . .

by a drastic increase in the oscillation variance, can be con- 44| 2

sidered as a phase transition. An example of the dependenc

of the variance of the variablgt) on A for ©=0.3 is given t4r T

in Fig. 14(a). We can conclude from this figure that the phase 12 - y

transition caused by the harmonic component of the curren 1k 4

across the membrane is of the first kifrdther than of the %

second onk It is interesting that the jump has a fine struc- 08 - i

ture: there are local ups and downs in the variance growttr 06 | -

[Figs. 14b) and 14c)]. This fine structure is associated with 04 L |

drastic changes in the oscillation’s shape under small

changes oA (see Figs. 13 and 15 02 r T
The critical value ofA depends on the frequeney; it is 0 bt . L . . . '

minimal for a certain value of the frequency which in turn 0 005 01 015 (;‘2 025 03 035 04

depends orl, [27]. The reason for this dependence is the

resonance response of a nonlinear oscillator to a harmoni 0.6

external force. As an example, the dependence of the critica g-i

value of the amplitudé on the frequencw is shown in Fig. 03

16 forl,=0.2. We see that the critical value of the amplitude 0.2

is minimal for ®=0.27, which is close to the frequency of oir , , , ,

. . e 0
small free oscillations about the equilibrium state equal to 0.05718 0.0572 0.05722 0.0572 0.0576

wo~0.3146. A A

For other values of the frequency the phase transition with  F|G. 14. The dependence of the variance of the varigiie the
increasingA occurs in a similar manner. This is illustrated by alternating current constituent amplituélein the Bonhoeffer—van
Fig. 17, where the dependencies of the variancé of the  der Pol system fow=0.3 in the ranges € A<0.4 (a), 0.05717
amplitudeA for ¥=0.2 andw=0.4 are given. <A=<0.05723(b), and 0.057&A=<0.0578(c).
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FIG. 15. The evolution of the time dependencis) for w
=0.3 and A=0.057 (a); A=0.05717 (b); A=0.0572 (c); A
=0.05723(d); A=0.05746(e); A=0.058(f); and A=0.059(g).

“limit cycle” induced by white noise was considered in
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FIG. 17. The dependencies of the variance of the varigtda
the current alternating constituent amplitulldor »=0.2 (a) and
®w=0.4(b).

Refs.[24,28—30. However, these works are mainly devoted €non from the standpoint of the exhibition of the intrinsic

to the calculation of the probability distributions in the vicin- Properties of the system and the noise-induced transition to a
ity of the induced “limit cycle.” We consider this phenom- new state. The latter is associated with the intersection of a

ACI’
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0.09
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0.07
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0.05

0.1

0.2

0.3
®

0.4

0.5

boundary on the phase plafthe transient repeller is such a
boundary by the representative point under the action of
noise. In principle, such intersection is possible for the noise
intensity k as small as is wished. Therefore the transition
should occur smoothly as increases. Hence, in the strict
sense this transition is not a phase transition. However, it is
closely similar to a noise-induced second order phase transi-
tion. For example, the dependence of the variance of the
variable& on the noise intensity, found by numerical simu-
lation of Egs.(9) and shown in Fig. 1&), can be approxi-
mated on a certain interval by the formula®~5(x
—0.0065)"2. This formula is similar to that which describes
the dependence of an order parameter on temperature for
ordinary second order phase transitions with critical index
equal to 1/2. Furthermore, it can be sdeae, e.g., Fig. 19
that this transition occurs via a peculiar kind of on-off inter-
mittency. As for ordinary on-off intermittendy81,32,10,11,
close to the transition onset the representative point in the
phase plane is walking in a certaénvicinity of the equilib-

FIG. 16. The dependence of the critical value of the currentium state over prolonged period&o called “laminar

alternating constituent amplitudie,, on the frequencw. The char-

phases’}, and only occasionally escapes from this vicinity.

acter of this dependence is caused by the resonance response of &@ntrary to ordinary on-off intermittency, these escapes have
nonlinear oscillator, including the Bonhoeffer—van der Pol one, to ahot a random but the strictly specified shape of pulses, and

harmonic external force.

the duration of each of them is unchanged as the noise in-
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x -1 7
800 : . : . 15 1 1 1 1 1
b 600 700 800 900 1000 1100 1200
700 : t
600 [- . FIG. 20. Oscillations of the variablé(t), induced by white
noise, fork=0.1152.
500 | -
~ 400 |+ . the pulses is unchanged we can use the mean interpulse time
300 L ] (the mean periodin place of the mean duration of “laminar
phases.” The dependence of the mean pefiah the noise
200 [ . intensity k is shown in Fig. 1&). It can be approximated by
the formula
100 -
0 1 1 1 ;
0.02
.02 .04 X X X
0 0.0 0.0 . 0.06 0.08 0 T~38ex;{ - )

FIG. 18. The dependencies of the variance of the varial{®
and the mean period (b) on the noise intensity in the case when
the alternating component of the current across the memlisréine
is white noise. Solid lines show the ploig=5/x—0.0065 (a),
and T=38 exp(0.024) (b).

which is typical for a mean time of an intersection of a

boundary[33,34. We see that the mean period decreases
exponentially as the noise intensity increases, that qualita-
tively agrees with the initial part of the corresponding depen-

dence obtained in Refd24,28. However, we have not

tensity increases. That is why these escapes should not kg, the increase of the mean period with increasing the
called “turbulent phases.” Away from the point of onset the n?ise intensity which is mentioned in this paper.
0

duration of the laminar phases decreases and the variance It should be noted that the pulses induced by noise differ

the system variables increases. Because here the durationm{'e in shape from the pulses induced by a periodic force

[compare Figs. 20 and 1], with the only difference that
the pulses induced by noise are somewhat noisy and the
interpulse time is random. Intrinsic properties of the system
reveal themselves in this similarity.

3 T T T T T T

25 E

IV. CONCLUSIONS

In conclusion we note that the considered noise-induced
wr 1r § phase transitions take place in a similar fashion to the phase
transitions induced by a periodic action upon the same sys-
05 T tems. In the SEIR model the difference between the noise-
induced phase transitions and the transitions induced by a
periodic action is only in the critical index. In the
Bonhoeffer—van der Pol oscillator the transition induced by
noise is actually not a phase transition but it is very similar to
p \ \ . . . . a second order phase transition, whereas phase transitions
800 900 1000 1100 1200 1300 1400 1500 induced by a periodic force at a specific frequency are of the
t first order. The shape of the oscillations excited in conse-
FIG. 19. An example of oscillations of the variakjét) for « quence of these transitions is determined by the intrinsic
=0.0098 demonstrating a peculiar kind of on-off intermittency properties of the systems and depends only slightly on the
close to the onset of the phase transition. exciting action.

-05 E
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